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INTRODUCTION

The problem considered herein arose first from the desire to 

locate the upstream limit of air entrainment in spillway flows. Since 

air entrainment is possible only if the free surface is turbulent, and 

since the usual sourse of that turbulence is the turbulent boundary 

layer, the present investigation arose as a logical approach to the 

problem.

More specifically, the problem requires the formulation of 

a basis for the design calculation of the location at which the free 

surface first becomes turbulent due to the proximity of the turbulent 

boundary layer. From this point downstream, air entrainment produces 

a bulking of the flow which requires that flanking walls be constructed 

much higher than necessary to confine flow at potential or near potential 

depth. Certain knowledge of the absence of air entrainment upstream from 

a certain point permits the elimination of these extra high walls in that 

region, effecting an important saving in cost. The problem of air ent

rainment itself is being handled as a separate project at the St. Anthony 

Falls Hydraulic Laboratory, University of f/innesota.

The results of this investigation may also be added to the ac

cumulating store of knowledge concerned with turbulent boundary layers 

in general. To this end the data will be analyzed according to conven

tional definitions and compared with the results o:‘ other boundary-layer 

investigations•
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BACKGROUND OF THE PROBLEM

Theory of the boundary layer Applied to Steep Slopes

7!>e assumption of a non-vis co\is fluid yields a solution to 

the problem of flow down stoop slopes which has long since taken its 

place in engineering literature. By application of the requirements 

of irrotationality and of the principles of conservation of energy 

and matter, together with the condition that the pressure be constant 

along the free surface, one determines the velocity, the pressure, 

and the location of the free surface at any station along the slope. 

Curvilinear geometry makes the analysis more tedious but offers no 

fundamental difficulty.

7/hen viscosity enters the problem, however, one employs the 

expedient of separating the flow into two domains, as suggested by 

Prandtl [1 ] in his original enunciation of the boundary-layer concept. 

Prandtl considered that in many flow situations (particularly those 

involving fluids of low viscosity of which water is a good example), 

the viscous effects were largely confined within a relatively narrow 

zone adjacent to the boundary, so that the greater part of the flew 

behaved very nearly as if the fluid were non-viscous. He then proposed 

that these two domains be treated separately. The domain of large vis

cous effects is called the boundary layerj the domain of negligible 

viscous effects is called herein the zone of near-potential flow, in

dicating that it is slightly different from the potential flow of the 

non-viscous fluid. On the spillway both domains exist contiguously,
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the near-potential dominating the picture at the beginning and the 

boundary layer comprising nearly the entire depth of flow at its 

downstream limit of development.

Flow in the near-potential domain remains essentially ir- 

rotational and free from shear forces. Aside from the displacement 

in the direction away from the boundary, flow in this domain is hand

led as if one were dealing with the spillway flow of a non-viscous 

fluid. This displacement i3 never large enough in a spillway problem 

to produce a significant difference between the magnitude of the act

ual velocity in the near-potential domain and that computed at the 

same station on t he basis of irrotational flew. The displacement is 

significant in determining the depth of flow, however, increasing that 

quantity beyond the value predicted by irrotational flow theory.

Flow within the boundary layer, on the other hand, is com

plicated by the presence of rotational flow and an additional force, 

the shear at the boundary. The nature of these two complications is 

understood only in the case of laminar flow, in which the well knovm 

viscous shear relationship applies. The development of laminar bound

ary layers may be handled without resort to experimental measurement. 

Unfortunately, the transition from laminar to turbulent boundary layor 

usually occurs within the first few feet, and often within the first 

few inches, of development, so that the laminar boundary layer consti

tutes no significant part of the spillway problem.
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The development of the turbulent boundary layer is governed 

by parameters which have customarily been determined by experiment.

In like manner, the solution proposed here depends largely upon lab

oratory observations of the desired parameters, which are then regi

mented according to the considerations of previous experience with 

turbulent flows. This empirical approach is the only one available 

in view of the lack of knowledge of the principles which govern flow 

with turbulence.

In addition to the location of the critical point ( i.e., 

the point at which the free surface of the flow first becomes turbulent 

due to the proximity of the turbulent boundary layer) and the location 

of the free surface upstream from it, the goal of this study is to 

delineate the effect of continuous positive acceleration on the standard 

boundary-layer parameters. This latter goal culminates in a series of 

functional relationships presented graphically in the section "ANAUSIS 

OF THE DATA." In order better to understand the nature of these rela

tionships, and in order to comprehend their significance, a brief re

view of the analytical background of this study is in order.

Definitions of Bound a ry- lay cr length Parameters

In the case of turbulent boundary layers, analysis is based 

largely on experimental evidence, which is regimented according to a 

conn,only accepted set of definitions. One encounters first of all the 

nominal thickness of the boundary layer, given the symbol S  . It is
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defined as that distance y  from the boundary at which the magnitude 

of the velocity is 99$ of the value predicted by irrotational flow 

theory, A graphical presentation of this relationship is shown in 

Figure 1.

In addition to the nominal thickness, two other length parameters 

are commonly employed in the study of boundary layers. One of these is 

the displacement thickness, given the symbol o , which is the dis

tance which the potential flow has been displaced from t he boundary by 

the presence of the boundary layer. The other is the momentum thickness 

given the symbol & , which is a measure of the defect of momentum

flux within the boundary layer. In the symbols of mathematics, these 

two lengths are defined as follows (for two-dimensional flow):

Displacement thickness (1)

i!onentum thickness (2)

where S  is the displacement thickness,

0 is the momentum thickness,

S is the nominal thickness of the boundary layer, 

u is the velocity at a point within the boundary layer,

U is the velocity of the potential flow,

and y is the distance from the boundary*

The significance of these definitions is illustrated in Figure 1*
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The von arman Tonentum Equation

Using the two length parameters S *  and 6  , von Karman [2] 

has formulated an expression for the boundary shear in accelerating 

flows *

in which Cf is the local coefficient of boundary shear,

T 0 is the intensity of boundary shear, 

is the mass density of the fluid, 

x  is distance in the direction of flow, 

and H is the shape para niter defined as &*/ 6

All other symbols are as previously defined* If one knows the func

tions ’which relate U , , and H to x , one is then able to

integrate this expression numerically to obtain & as an explicitly^' 

function of x • Of these three functions, the first is given in the 

usual case, the other two often being assumed according to the notions 

of boundary layer behavior indicated by related experiments*

Rather than introduce at this point a synthesis of the devel

opment of the turbulent boundary layer on steep slopes based upon the 

numerical integration of Equation (5), the author chooses to reserve 

this expression for the evaluation of the cf function for smooth and 

rough boundaries in accelerating flows* The results will be compared 

-with the observations of other experimenters* Such comparisons may 

some day lead to the principles as yet undiscovered which, in combination
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with the von Kansan momentum equation, will allow the synthesis of 

turbulent boundary-layer development without the use of empirical 

expressions of laboratory data.

The K6rman-Prandtl Velocity Distribution Equations

I,ferny of the notions about boundary layers find their bos is 

in an abundance of experimental data concerning flow in pipes. Among 

thorn are the Karmn-Prandtl velocity-distribution equations far turbu

lent flow near smooth and rough boundaries, the expressions being 

given in Rouse [3] in the following forms

Smooth (4)

Rough (5)

These expressions are derived by von Karran by application of the 

Prandtl mixing-length theory, the assumption of a constant shear stress 

throughout the region, and the neglect of the laminar shear. The exper

imental data of Nikuradse [4] and others seem to confirm the derivation.

Related Investigations

Boundary-layer developments on flat plates in uniform flow 

have been synthesized by mathematical conversion of pipe-ficrw principles, 

as well as measured in the laboratory. Sohlichting [S], in a lecture 

series on boundary-layer theory, presents an excellent review of the
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conversion techniques as applied to both smooth and rough flat plates. 

In both cases, the basic assumptions are that the thickness of the 

boundary layer corresponds to the radiu3 of the pipe and that the shape 

of the velocity profile in the boundary layer is the same as that in a 

pipe. Although this last assumption is definitely in error, values of 

cf obtained experimentally agree generally with those predicted by 

these conversion techniques in the case of the smooth plate.

The development of the boundary layer in non-uniform flow 

was studied by Gruschvitz [G], who made measurements along the con
verging and diverging plane walls of a channel. In the development of 

his method of analysis, Gruschwitz presents the idea that the shape 

of the velocity profile may be characterized by a single parameter, 

which he defines as

(6)

in which y  is the Gruschwitz shape parameter, 

and u# is the velocity at y * 0  .

With this as a background, he proceeds with a numerical integration 

of Equation (3) implemented with two empirical expressions. One of 

these, for C f , is obtained by conversion of pipe-flow principles 

according to the method indicated in the proceeding paragraph. The 

other is for his shape parameter which he obtains by plotting the 

the experimentally obtained values of y  against pressure gradient 

and the Reynolds number. He noted little dependence upon the Reynolds
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number and subsequently eliminated it from consideration in the rela

tion for his shape parameter*

A more recent method for the calculation of boundary-layer 

developments in flows with pressure gradients is presented by von 

Doenhoff and Tetervin [7] in a 1243 publication by the National 

Advisory Committee for Aeronautics. Like Gruschwitz, they consider the 

velocity profile susceptible of characterization by a single parameter, 

although they choose to use H instead of yf • In relating II to 

the pressure gradient they noted a consistent variation with Reynolds 

number not discovered by Gruschwitz. This variation was eliminated 

by expressing H as a function of the quotient of the non-dimensional 

pressure gradient and thB coefficient of boundary shear. For tho 

determination of this latter quantity they used the Squire-Young 

formula, which was the result of experiments involving flows with both 

pressure increase and decrease. In this connection they noted Mno 

systematic variation of the skin-friction coefficient with the shape 

parameter was indicated by the data."

Within the last year another analysis lias been proposed by 

Tetervin and Lin [8] for the calculation of turbulent boundary layers 

with pressure gradients. The required relationships from experiment are 

those between boundary shear and pressure gradient, as well as that 

between the integral of shearing stresses across the boundary layer and 

the pressure gradient. These relationships are offered by Granville [9} 

in a recent publication of the David W. Taylor Model Basin, together
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with another excellent summary of analytical approaches to the cal

culation of the turbulent boundary layer with pressure gradient.

Very recently in fr*ande, Halbronn [10] conducted an invest

igation similar to the one reported herein, although he made no 

attempt to secure a controlled variation of slope and roughness.

Halbronn again uses Equation (3), although in somewhat different form, 

and taking the velocity distribution and shear relationship to be the 

same as that in a pipe, he obtains an expression which enables him to 

determine boundary-layer dimensions. Treating flow outside the bound

ary layer as non-viscous flew, he is then able to determine the locus 

of both the free surface and the upper limit of the boundary layer 

which he projects to an intersection which he calls the "point critique" 

as we shall continue to do.

Halbronn compared the location of this critical point pre

dicted by his analysis with observations made by him and others both 

in the laboratory and in the field. All of his experimental measure

ments were made at values of Ux/v less than 4 x 10^, while those 

of the present investigation were taken over the range 1.4 x 10° to 

3.7 x 107. Certain observations made by Hickox [11] of the flow on 

the spillway of Norris Dam at Reynolds numbers in the range 1.5 x 10s
Qto 1.5 x 10 were also compared to analytical predictions, as well as 

observations of flow on models of the spillway of Norris Dam and that 

of Bort-les-Orgues. The agreement was good in all cases.
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With this we reach an end to the discussion of the material 

which forms a background for the present investigation. The author 

does not presume that he has mentioned here all work significant to the 

study of the development of the turbulent boundary layer on steep slopes. 

The intention here is to introduce the subject in a general way to the 

non-specialist in boundary-layer work, and to furnish suggestions for 

possible further study of the background. Those who are interested in 

further reading are referred to the references at the end of this paper, 

which, although short, nevertheless will in turn provide additional 

references to the end that a very complete coverage is secured.
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BCPERBENTAL ASPECTS

Equipment

The approach of the present investigation is made largely 

from the experimental standpoint. In order to achieve a systematic 

variation of the quantities involved, laboratory equipment designed 

expressly for the project was constructed, using funds supplied 

through a contract between the Iowa Institute of Hydraulic Research 

and the Waterways Experiment Station of the Corps of Engineers. In 

simplest terms, this equipment provided for the introduction of non- 

turbulent flew to the crest of a steep flume of controlled slope and 

roughness. Dimensions were limited by the amount of space and water 

economically available, but were regarded as adequate for the deter

mination of information sufficient for design purposes.

The central feature of the equipment is the glass-lined 

flume, an open channel made in two sections, one 12 feet and the other 

4 feet long. As Figure 2 shows, the glass floor is supported on ad

justable shoes which provide means of alignment independent of the 

steel frame. This feature made possible an extremely precise floor 

which deviated from a true plane by no more than 0,002 inch. The glass 

floor itself provided the smooth boundary, while a rough bound ary was 

obtained by stretching a piece of screen over it. This screen was 

16 x 16 mesh made of bronze wire 0.010 inch in diameter, about which 

more will be said at another point in this paper. General views of

the flume are shown in Figure 3.
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Connecting the glass-lined flume with the stilling tank wore 

three spillway crests, one far each of the three slopes used, photo

graphs of which are shown in Figure 4. The profilo shape was nearly 

that of the underside of the nappe of a sharp-crested weir discharging 

under a 1-foot head. Actually it was made up of an ellipse and a 

1.88-power parabola. The vertical semi-axis of the ellipse was 1.51 

inches in length, while the horizontal was 3.60 inches. The equation 

of the parabola was y * 0.512 x * , with y being measured positively

along the horizontal in the direction of flow. The origin of coordi

nates was the high point of the crest. Brass templates cut to the 

pattern of these curves were used as screeds in concreting the crests, 

the mortar being a mixture of Portland cement and sand. The- mortar was 

deliberately left a slight distance below the level of the brass tem

plates and the intervening space filled later with paraffin applied 

as a liquid. This wax wa3 then shaved with a sharp-cornered straight 

edge, again using the brass templates as guides, until a smooth and 

accurate crest profile was achieved.

The center brass template was made thicker than those near 

the edges of the crests and was drilled at intervals to form a series 

of piezometric openings, which were connected by flexible tubes to a 

manometer bank, where the pressure head at each opening was measured. 

Smooth curves drawn through points plotted from such measurements are 

shown in Figures 7 through 9 for each of the three slopes of the flume. 

Fortunately, effects of curvilinear flow are insignificant a short
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distance below the crest region so that the assumption of hydrostatic 

pressure distribution in the direction normal to the boundary is suf

ficiently accurate on the straight portion of the flume for the pur

pose of determining the velocity field.

The weir crests were connected at their upstream ends to the 

stilling tank, the function of which was to deliver non-turbulent, 

potential-like flow. This type of flow was approached by using a 

rather large tank equipped with a series of baffles, grids, and screens 

arranged in circular arcs as shown in figure 5. Two objectives were 

achieved by th'.s arrangement $ first of all, the presence of a pressure 

drop across each baffle, grid, and screen produced an effect which dis

tributed the velocity in a potential-like pattern; secondly, the arrange

ment of coarse to fine gradation of the baffles, grids, and screens 

reduced the turbulence of the incoming flow to such a small scale that 

it was effectively dissipated before it reached the weir crests, so 

that essentially the only turbulence present within the flow on the 

slope v/as that engendered by the boundary itself.

Several sizes of stagnation tubes were used to make the stag

nation-pressure surveys, but after a little experience with each, two 

were picked for general use. One was relatively large, being 0.084 inch 

in diameter, and one relatively small, being 0.021 inch in diameter. 

Results of the two were compared with a view toward discovering at what 

distance from the boundary agreement be tureen them began. This point 

was reached when the centerline of the large tube was about one diameter



www.manaraa.com

15

from the boundary. The advantage of the large tube was that it per

mitted the taking of readings in rapid succession, since the smaller 

tube had such a high resistance to flow that considerable time elapsed 

before equilibrium was attained in a new position. On the other hand, 

this high resistance to flow completely damped out all oscillations of 

the level of the mercury in the open manometer, permitting more precise 

readings, so that the smaller tube was used as a general rule. The 

fluctuations of the level of the mercury in the open manometer associated 

with the use of the large tube were very evident as long as it was lo

cated within the boundary layer, and disappeared completely when the 

tube was moved to the non-turbulent zone outside the boundary layer.

The line between the two domains was determinable with surprising pre

cision on the basis of the presence and absence of the fluctuations, 

although it was always outside the locus of y • 6  by about a diameter 

of the tube. The drawings of the stagnation tubes are presented in 

Figure 6.

The mounting of the stagnation tubes was such that their motion 

was normal to the boundary. In order to determine the precise location 

of the tube with respect to the boundary, an Ames dial graduated to 

0.001 inch v/as connected directly to the stagnation-tube support. The 

origin of the y coordinate was determined in two ways. The first was 

simply visual, the tube being viewed in the direction normal to its long 

axis with the eye slightly above the place of the glass floor, so that 

both the tube and its reflection were seen simultaneously. The tube
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was carefully lowered until the tube and its image made contact, at 

which point the reading of Hie Ames dial was taken. The process was 

repeated and the second reading compared with the first. «Slth great 

care, one could duplicate readings within 0.001 inch. The value of y 

was taken to be one-half the outside diameter of the stagnation tub© 

when it was in this position of initial contact. The second method 

employed a metal shim of known thickness placed between the glass and 

the tube. Upon initial contact an electrical circuit was completed.

In this position the value of y was taken to be ono-balf the outside 

diameter of the tube plus the thickness of the shim. Since the visual 

method could be used under water, and since it agreed with the second 

method within 0.001 inch, it was employed almost exclusively for all 

work done on the glass boundary.

The value of the y coordinate for all runs made with the 

screen boundary was measured from the r.id-plane of the screen to the 

centerline of the tube. The origin of coordinates was determined in 

this case by measuring the distance between the lowest extremity of the 

stagnation tube and the flat surface forming the bottom of the support 

tube. The tube was then lowered to firm contact between the screen 

and this flat surface, and then raised the known distance between the 

lowest extremity of the tube and this flat surface. In this position 

the value of the y coordinate was taken to be one-half the outside 

diameter of the stagnation tube plus one diameter of the wire from 

which the screen was made.
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The stagnation tubes were attached to a movable carriage 

which traveled the length of the flume, and upon which the open mer

cury nanometer was mounted. Vertical alignment of the manometer was 

maintained by re-setting it for each slope. Using a gage graduated 

to 0.01 foot and equipped with a vernier, the steady level of the mer

cury could easily be determined within 0.001 foot. The ratio between 

the area of the mercury tube and that of the mercury-..-ater well was 

such that one multiplied the number of observed feet of mercury by 

13.85 in order to obtain the corresponding number of feet of water.

The level of the mercury which corresponded to a zero stagnation pres

sure was determined by noting that the stagnation pressure observed in 

the domain outside the boundary layer must correspond to the original 

total head.

One series of runs was made with the glass boundary and a 

second with a boundary formed by stretching a length of screen over the 

floor of the flume. The screen was 16 x 16 mesh made of 0.010-inch- 

diameter bronze wire, it was chosen because it was uniform, easily re

producible, convenient to apply and remove, and very low in cost. It 

was important to use a piece of screen completely free from folds, 

bulges, and kinks; only a perfect piece would lie flat on the glass with

out the use of an adhesive. For this reason, the material used was 

taken from a previously unopened roll. Both ends were soldered to brass 

bars, one of which was screwed to the vertical wall of the stilling tank 

about three feet below the crest. The other was first fastened to the
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downstream end of the flume in such a manner that the screen could be 

stretched* later it was found that the combination of gravity and 

shear forces on the screen produced adequate stretching, so that fast

ening to the lower end of the flume was eliminated. This made very 

rapid removal and application of the screen possible* In order tot
avoid damaging the mesh in handling, a wood drum of special design was 

employed•

In order to det mine the effective roughness, a piece of 

screen from the same roll was applied to the floor of one of the flumes 

of the Iowa Institute of Hydraulic Research, Because the floor of 

the flume was not as plane as was the glass floor of the steep flume 

(although the deviation from a true plane was in the form of a smooth 

curve about 20 feet long, the low point of which was about 1 am. from 

a straight line drawn between the ends of the curve), it was necessary 

to use an adhesive to secure the screen to the floor at all points*

The maximum thickness of this adhesive film was on the order of 0.004 

inch. Uniform flow was established over the screen, uniformity being 

determined by both depth measurements and stagnation-tube surveys. 

Discharge v*as measured by an orifice meter located in the pipe line 

supplying the flume. Knowing the discharge, the depth, and the slope, 

one could compute the values of f , k , and n , as tabulated at 

this point. The equations used to deterrine f and n arc the ordi

nary Darcy-Tieisbach and Manning expressions, respectively, while that 

used to determine k comes from an application of the Karman-Prandtl
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velocity distribution law to the case of two-dimensional flow, as 

given in Rouse [3]:

(7)

Run Slope Depth Average Velocity f k n

1 0.0167 0.206 ft. 5.58 ft./sec. 0.0394 0.0097 ft. 0.0150

2 0.0100 0.286 ft. 4.47 ft./sec. 0.0368 0.0079 ft. 0.0146

3 0.0100 0.036 ft. 1.89 ft./sec. 0.0620 0.0096 ft. 0.0155

4 0.0167 0.070 ft. 2.21 ft./sec. 0.0655 0.0090 ft. 0.0145

Note that the values of k and n indicate a roughness 

comparable to rough concrete. Thus, in the remainder of this paper, 

the development of the boundary layer over the 16x16 mesh screen will 

be considered a good approximation to that occuring over rough concrete.

Data
The experimental data were obtained from stagnation-pressure 

surveys made in flows down each of the three slopes, with variations in 

the roughness of the boundary and in the rates of flow, ',7ater surface 

profiles for the highest rates of flow used on each of the t> ree slopes 

are shown in Figures 7 through 9. (Note that the values of pressure 

head are plotted vertically in Figures 7 through 9$ the dashed line is 

drawn approaching the limit of y^ sec 0( on the straight portion of 

the flume.) From the curvature of the vater surface one may make an
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estimate of the pressure distribution existing within the flow and 

compare it with the hydrostatic distribution in the direction normal 

to the boundary which was assumed in this analysis. The greatest 

curvature of a region from which data included in this analysis were 

obtained is between Stations 3 and 4 on the 20° slope. It is signifi

cant to note that in this region the assumption of a hydrostatic dis

tribution of pressure in the direction normal to the boundary intro

duces an error in the magnitude of the velocity on the order of 1%.

The error at stations further down the slope is much less, so that they 

are neglected in the computations for the velocity.

In making the stagnation-pressure surveys the carriage was 

located at a fixed position on the flume and a normal traverse made. 

After making 10 to 30 stagnation-pressure measurements at different 

distances from the boundary, the carriage was moved to the next station 

and the process repeated. The result was a characterization of the 

stagnation-pressure field by knowledge of its magnitude at many dis

crete points, these values being presented in terms of the velocity 

distribution which they indicated. Velocity profiles obtained from the 

six runs made with the highest rates of discharge are presented graph

ically in figures 10 through 15. Note that these six plots are in tie 

form of logarithm of velocity as a function of logarithm of the dis

tance from the boundary. Two others are presented in Figures 1G and 17, 

which arc plotted in the form of velocity as a function of logarithm 

of the distance from the boundary. No velocity profiles are presented
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which resulted from surveys made at the lower rates of discharge, 

although data deduced from them are included in Figures 20, 24, and 

25.

In addition to the stagnation-pressure survey, certain other 

observations were made by visual inspection of the external and int

ernal appearance of the flow. One noted first of all that the effect 

of the walls of the flume is to produce snail waves which issue norrrjal 

to the wall. Doing superimposed upon the general downstream motion of 

the water, the waves have a total velocity which is the vector sum of 

the celerity and the surface velocity of the fluid over which the wave 

is being propagated. Since the celerity oflhe wave is decreasing 

while that of the fluid as a whole is increasing, the motion of the wave 

is along a curve of such a shape that a region in t he fora of an in

verted cusp in the central portion of the flow is largely unaffected by 

the presence of side boundaries.

One also observed that the free surface in the neighborhood 

of the critical point was characterised by a change over a relatively 

short distance from a smooth, glass-like, transparent appearance to one 

which was rough and nearly opaque. Figure 18 illustrates this transition 

photogra ideally, with pictures taken with the aid of a stroboscopic 

light flash of 1/5000 second duration. The apparent location of this 

transition was noted and compared later to the location of the critical 

point determined graphically. Comparison showed that slight disturb

ances occur upstream from the critical point, probably due to the fact
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that there is a turbulent region outside the boundary layer if one 

takes the empirical definition for the boundary layer thickness used 

here, corresponding to u/U & 0.99 . However, the effect intensifies 

rapidly from this point of initial disturbance on, and reaches a well 

developed stage at the critical point.

Careful measurement showed that energy loss in the domain 

outside the boundary layer is practically non-existent. The author 

connected a flexible translucent tube completely filled with water to 

the stagnation tube when it was located in flow outside the boundary 

layer at the greatest possible distance from the stilling tank. The 

water level in this translucent tube rose to a distance above the water 

in the stilling tank which was equal to the computed value of the velo

city head at the point of comparison. If there was any energy loss, 

its magnitude was less than 0.001 foot in a region where the velocity 

head was on the order of 10 feet.

No further comment on the data will be made at this point, 

additional aspects being reserved for presentation in the section 

"DISCUSSION OF THE RESULTS."
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ANAIXSIS OF THE DATA

Dynamic Analysis

Since the von Xarman momentum equation forms the sole basis 

for the dynamic analysis of the turbulent boundary layer, it is signif

icant to review its derivation. One starts with a graphical represent

ation of the flow within the boundary layer as shown in Figure 19, and 

evaluates the net change in momentum flux as the fluid passes through 

an elenentary volume such as the one labeled ADCD. The net change in 

momentum flux in the x direction is equated to the algebraic summation 

of all the forces in the x direction which act on this same elementary 

volume of fluid. Borrowing a technique U3ed by Schlichting, the calcu

lation is performed with the aid of the following table:

Section Flow Out Momentum Flux Out

4 0

C D

S C

z f k

The summation of the momentum flux is next changed in form in order to 

introduce 6 *  and 9 as ordinarily defined. This results in an
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expression of the form

(8)

The integrals which thus arise from this application of the 

principle of conservation of momentum are readily simplified by using 

the standard definitions of S *  and I  • Since the integrand of the 

first integral vanishes at y * & , one m y  both change the upper 

limit of integration from h to 4  and remove the differentiation 

with respect to x outside the integral. Changing the upper limit of 

integration on the other integrals as well, and recognizing all three 

in terms of the ordinary expressions for o and 0  , we have the 

following simplifications

(9)

Turning next to the evaluation of the forces acting on tills 

element of fluid, we note but three: the shear force at the boundary, 

which may be expressed in tonae of the coefficient of boundary shear; 

the gravitational force, which may be expressed in terms of the accel

eration outside the boundary layer; and the pressure gradient force, 

which may be expressed in terms of the slope of the water surface with
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respect to the boundary, dyg/dx* The summation of forces acting in 

the x direction then becomes

(10)

Writing the last term with y=- expressed as the product , and

combining it with the gravitational term, we have upon factoring

(11)

One will note that the first term in the parenthesis is an acceler

ation with a magnitude of 5g , where 3 is the slope of the bound

ary, while the second term is an acceleration of the magnitude fabact 

dyo/dx g) . Since dyg/dx is at most 4% and usually less than 

of S , it will be dropped from the expression. With this deletion, 

we have the following upon equating the net change in momentum flux 

to the surination of forces acting on the elementary volume of fluid:

(12)

which simplifies to

(13)

"his was the equation which was used to evaluate Cf .
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Dimensional Analysis

A dimensional analysis serves to elucidate the essential 

variables in the problem and provides the basis for graphical present

ation of results. Noting that the viscosity, density, and unit weight 

of the fluid enter the problem, one may form the following relationships:

(14)

(15)

(16)

in which & is the nominal thickness of the boundary layer,

U is the potential velocity,

g is the acceleration of gravity,

x is distance in the direction of flew, U2/2gS,

ju t is the dynamic viscosity of the fluid,

p is the mass density of the fluid, 

k is the equivalent Nikuradse roughness, 

q is the discharge per foot,

H is the shape parameter of the velocity profile,

Cf is the coefficient of boundary shear, 

and S is the slope of the boundary.

Dimensionless combinations of these variables may be formed as follows:
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(17)

(IB)

(19)

One will note from the definition of x that V**/gx is directly pro

portional to the slope of the boundary, so that in general the three 

independent variables listed above are functions of the Reynolds number, 

the relative roughness, the slope, and the ratio of the potential depth 

to x , the last being an interpretation of the dimensionless expres

sion of the discharge. In the expressions for cp and II one may 

introduce 6  fo r  x without changing the validity of the procedure.

The result is that the Reynolds number and the relative roughness are 

written in terms of the boundary-layer thickness. This furnishes im

mediately a basis for comparison with uniform flat in pipes or open chan

nels. If the x is retained, one obtains plots similar to those obtained 

from research on flat plates in uniform flow.

Analytical Techniques

In the reduction of the data, the author employed the standard 

definitions of 6  and G . The actual process by ifoich these values 

were obtained was one of numerical Integration in which the trapezoidal
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rule was employed In general. An exception occurs only in treating 

the region immediately adiscent to the boundary in which no stagnation- 

pressure measurements were physically possible. Here an assumption was 

made which was roughly equivalent to extrapolation of the velocity pro

file according to a function of the form u * m yn . A typical value 

of the exponent n is 1/7. Integration of the function in the y 

direction with this value yields the very simple result that the dis

charge between y » 0 and y • y^ is seven-eighths of the product 

U1 yi • This rule iVas applied to the numerical integration of the 

velocity and a similar one for the numerical integration of the velocity 

squared only in the narrow layer between the boundary and the location 

of the first stagnation pressure measurement. Since this part of the 

flow is ordinarily a snail part of the whole, inaccuracies made in the 

estimate of its magnitude have little influence on the final result.

A graphical method was used to determine cT . The method 

consisted simply of extrapolating tie straight-line portion of the 

log-log plot of the velocity profile to its intersection with the line 

u * U • The value of y at this intersection was taken to be the 

value of 6  • This method is less dependent upon the judgment of the 

human eye than is the method of reading from a somewhat arbitrary curve 

the value of y at which u/U * 0.99. It also gives results that cor

respond to the definition of 6 , however, at worst within the limits

of experimental variation.
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The magnitude of the potential velocity U was determined 

by equating the vertical distance between the water surface and the 

line of total head to U**/2g • The slight difference between the

location of the actual surface and that of the potential flow is insig

nificant in making this computation, since the effect upon U is a 

change in magnitude of about 0.05$#

The same definition for x is used as that made at the outset

of this paper, x ■ U^/2g5 , being the one which allows a simplification
lV,

of Equation (3) to the form of Equation (14), This involves an approxi

mation, since the origin of coordinates moves a short distance upstream 

as one proceeds in.the direction of flow, and since the differentiation 

in the term d 6  /dx is made with respect to an x with a fixed origin. 

Here again, the order of magnitude of the error introduced by this approx- , 

iraation is insignificant, producing at worst a 4* discrepancy in the 

value of Cf • Errors of this order of magnitude are associated only 

with the stations near the crest of the flume. Over by far the greatest 

part of the flume the error is not detectable.

Dimensional Plots

The results of the analysis of the velocity profile arc 

presented first of all in dimensional form so that the reader may have 

a graphic impression of the data being considered here. In Figure 20 

S  is plotted as a function of x , the points resulting from tests 

with both glass and screen boundaries, with all three slopes, and with
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various rates of discharge* All of the points plotted here are pre

sented again in dimensionless form in Figure 24.

In Figures 21, 22, and 23 are presented the results of the 

numerical integrations of the functions which define ef* and & . 

Smooth curves have been drawn through each series of points. The 

value of the variable read from these curves was used in the compu

tation of C£ according to Equation (13), as well as in tie deter

mination of H according to the definition of that quantity.

Dimensionless Plots

Figure 24 presents cf/x as a function of the Reynolds 

number, the results obtained from differont slopes, from different 

boundaries, and from different discharges being plotted on the same 

field. In addition to the observations of this investigation, those 

of Halbronn and Mick ox are also plotted in this figure. Neither 

Halbronn nor Hick ox presented data in the form plotted, so that it 

was necessary for the author to deduce it from the information they 

did present. In the case of Halbronn’s work, the value of was 

obtained from the velocity profile by the same method applied to the 

data of this investigation. In the case of the observations made by 

Ilickax on the spillway of Norris Dam, the thickness of the boundary 

layer was taken to be 6 *  plus the depth of the potential flow at 

the same discharge and at the same station on the slope.

Figure 25 shows 6 /x as a function of relative roughness, 

with results obtained from different slopes and different discharges



www.manaraa.com

31

being plotted on the same field. Again the observations of Hide ox 

are plotted, with an assumption that the k of the concrete on the 

spillway of Norris Dam was 0.005 foot, corresponding to an average 

concrete surface texture. The value of k for the screen v/as taken 

to be 0.009 foot, according to the results of tests listed on page 19.

Figure 2G shows the c^ function for both smooth and rough 

boundaries as a function of the Reynolds number. The value of Of 

was computed by application of Equation (15) to the data obtained from 

the smooth curves drawn in Figures 21, 22, and 23. Also plotted in 

Figure 26 is a smooth curve labeled

(20)

This equation was obtained by substituting in Equation (4) the point 

y ■ cT , u * U , and also expressing the boundary shear in terms of 

Cf •
Figure 27 is the counterpart of Figure 26, presenting Of 

as a function of the relative roughness. A dashed line is drawn through 

the data and labeled

(21)

In this equation the k of the screen was taken to be 0.009 foot.
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Figures 28 and 29 indicate the variation of the shape para

meter H as a function of the Reynolds number and the relative rough

ness, respectively. The variation of H with the Reynolds number in 

flow over smooth flat plates has been approximated by Tetervin and 

Lin [8] with the expression

(22)

in which R - U £ / v  • A smooth curve representing the locus of 

points determined by the substitution in this equation data obtained 

in this investigation is drawn in Figure 28,
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DISCUSSION OF THE RESULTS 

The Role of the Discharge

Discharge has an insignificant effect upon the thickness of 

the boundary layer at a fixed value of x • This fact is first evi

dent in Figure 20, the plot of ^  as a function of x , and reappears 

in dimensionless form in Figures 24 and 25. One notes upon inspection 

of these plots that points corresponding to the same slope and the same 

boundary, but with much different rates of discharge, fall along the 

same line within the limits of experimental variation. This does not 

mean the same thickness at the same station; it is only with reference 

to the parameter x * U^/2g$ that the effect of variable discharge 

becomes indeterminable. This fact is basic to the solution of the full- 

scale problem. Evidently, one need only use the parameter x to define 

the location on the slope, and the development observed in the labora

tory becomes identical to that occuring over the same boundary at any 

rate of discharge.

Of course, the discharge is significant in determining the 

depth of flow and hence the location of the critical point. In this 

sense it limits the growth of the boundary layer, so that knowledge of 

discharge is necessary to define that aspect of boundary-layer devel

opment. An illustrative example in the section "APPLICATION TO THE 

DESIGN PROBLEM" will demonstrate the role of the discharge in locating 

the critical point.
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The Role of the Slope

As in the case of the discharge, slope has little effect on the 

thickness of the boundary layer at a fixed value of x • Although a 

slight difference between the developments occuring over the different 

slopes is apparent in some instances, it will be shown in the illustra

tive example of the section "APPLICATION TO TIE DESIGN PROBLEM that no 

important difference in the calculated location of the critical point 

results from choosing first one and then the other of these slightly 

different values of S /x . As in the case of the discharge, knowledge 

of the slope is essential in the computation of the depth of flow and 

hence the location of the critical point* The illustrative example 

mentioned will also demonstrate the use of slope in this regard.

The effect of the slope upon ĉ . and upon H is similar to 

its effect upon 6 /x , with consistent variation being apparent only 

in some instances* In the case of the rough boundary, both cf/x and 

C£ seem to have a positive correlation with slope. A more indistinct 

trend in the same direction is indicated in the plot far II as a 

function of relative roughness. The effect in the case of the smooth 

boundary is indeterminable, however.

The Role of the Boundary Roughness

Of all the variables employed in the investigation, the 

roughness of the boundary proved to be the most significant in deter

mining the locus of the nominal thickness of the turbulent boundary 

layer. One notes first of all in Figure 20 that all of the points
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follow two distinct trends, one for the smooth boundary and one for 

the rough. Again in Figures 24 and 26, this grouping according to 

roughness is evident, although the nature of Figure 24 is such that 

the delineation is not as distinct as it is in Figure 20.

The difference between the two trends evident in Figure 24 

is greatest in the middle range of Reynolds numbers, being snail at 

very low and at very high Reynolds numbers. This is to be expected, 

in view of the fact that at very low Reynolds numbers the flow within 

the boundary layer is laminar so that roughness of the boundary is 

of no consequence, and also in view of the fact that as R = Ux/V in

creases with x the thickness of the boundary layer is so large com

pared to the height of the roughness k that the boundary again be

comes effectively smooth. This latter fact is very significant to the 

spillway problem, for it makes possible at high Reynolds numbers a 

useful calculation of the location of the critical point without a 

precise specification for the roughness of the boundary.

It should be repeated at this point that the roughness of 

the screen used in the laboratory investigation is probably greater 

than that encountered on most concrete spillways. The variation of 

the parameter £ /x on an actual concrete spillway, then, should lie 

somewhere between that associated with the glass boundary and that 

associated with the screen boundary. Even if the concrete were as 

rough as the screen, however, the effect on the location of the criti

cal point would not be great. It may be surmised on this basis that,
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with the possible exception of the crest region, a very smooth spillway 
surface is not economically justified.

Summarizing the discussion up to this point, slope and dis- 
cliarge are unimportant as far as the rate of growth of the boundary layer 
is concerned. The roughness of the boundary is significant near the crest, 
becoming less important with increasing distance along the slope.

The Nominal Thickness of the Boundary layer
We turn next to a consideration of the nature of the variation 

of the boundary-layer thickness. At high Reynolds numbers on both smooth 
and rough boundaries, 6 is nearly a linear function of x . This is 
especially true with the smooth boundary. It is true that the ratio of 
6 /x continues to decrease as the Reynolds number increases; its rate 

of change is small enough, however, that very little curvature of the 
locus y * 6 results. Solution of the problem given in the illustra
tive example will demonstrate this fact.

Turning for a moment to d , one gains an insight into the 
nature of its variation in the light of the von Karman momentum equation 
solved for d £/cbc :

(23)

We see here that the gradient of & with.respect to x is a function 
of the difference between two terms, both of which are decreasing in 
magnitude in the x direction. In the usual case, decreases more
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rapidly than does ^/x, so that the locus of 0  if slightly concave 

downward. The nature of the equation is such, however, that little 

curvature is possible*

Going bade to £  , a significant effect is evident in the 

relationship between H , 6  , and 0  . Leaking the assumption that 

the velocity profile may be characterized by an expression of the form 

u « a y 11 , applying the definition of 0  , and solving for the 

ratio of 6 / 9  in terms of H , we have:

(24)

The significance of this expression lies in the fact that II is ap

proaching unity in the region of interest* The denominator of the 

fraction on the right side of the equation therefore decreases more 

rapidly than does the numerator* This means that &  is an increas

ing multiple of 0  , as it is as the shape of the velocity profile 

progresses in the direction of a rectangular distribution. Thus it 

is necessary that the locus of 6  with respect to x be less con

cave in the direction toward the boundary than is the locus of 0  with 

respect to x . It is entirely possible, therefore, that the locus 

of S  with respect to x is actually linear at high Reynolds num

bers, even if the .locus of 9  is not.

In the case of the rough boundary, the pronounced curvature 

of the locus of S  with respect to x is due primarily to the
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continuing decrease in the relative roughness, producing a more rapid 

change in the value of c^ as a function of x than is observed in 

the case of the smooth boundary. As the relative roughness approaches 

the limit at which it is effectively smooth, however, the variation 

in Cr. will decrease and at the same time the value of H will be 

near unity so that again the locus of cf vrith respect to x is 

possibly linear.

The Shape of the Velocity Profile

The shape of the velocity profile associated with the devel

opment of the turbulent boundary layer on steep slopes is better ap

proximated in most regions by an expression of the form u ■ m yn tlian 

one of the form u - b log y • This is especially true at large 

Reynolds numbers; it is not true at low Reynolds numbers and within 

close proximity of the boundary. Examination of Figures 10 through 

17 with the aid of a straight edge will reveal this fact. On the 

other hand, the expression of Tetervin and Lin, Equation (22), obtained 

from consideration of boundary-layer developments over flat plates with 

zero pressure gradient, is an approximation to the valuer of H ob

tained experimentally. Figure 28 indicates the degree of agreement. 

Evidently, the effect of continuous acceleration over the experimental 

range has little bearing on the value of H expressed as a function of 

U<9/v , as it is in Equation (22). In the opinion of the author the 

value of H in boundary-layer development on steep slopes does not 

subsequently increase, however, according to the predictions of
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Equation (22) but continues to decrease although at a diminishing 
rate. This is based upon the consideration that large values of H 
are associated with imminent separation, It is impossible to imagine 
imminent separation in flow down steep slopes.

The Coefficient of Boundary Shear for the Glass
Application of the Karman-Prandtl velocity-distribution equa

tion for turbulent flow near smooth boundaries, Equation (4), to the 
turbulent boundary layer on the glass steep slope yields an expression 
for cf which is an excellent approximation to the results obtained 
experimentally. This is evident upon examination of the relative 
position of the smooth curve and the points plotted for the glass bound
ary in Figure 26, Halbronn (10) made essentially this assumption in 
his method of synthesis of the development. Evidently, the presence 
of acceleration has little influence upon the ratio between the inten
sity of boundary shear and the dynamic pressure at the edge of the 
boundary layer. In other words, despite the fact that the shape of the 
velocity profile within the boundary layer is different from that as
sociated with flow in a pipe, the intensity of boundary shear is the 
same for the same maximum velocity, the same density, and the same 
Reynolds number.

The Coefficient of Boundary Shear for the Screen
In like manner, application of the Karman-Prandtl velocity- 

distribution equation for turbulent flow near rough boundaries, Equation (5),
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to the turbulent boundary layer on the steep slope with the screen 

boundary, yields an expression for ĉ - which is in excellent agree

ment with the experimental results if one chooses the value of k 

for the screen to be a great deal less than the value indicated by 

a test of the screen in uniform flow in an open channel. The value 

of k which gives an expression equivalent to one derivable from 

Equation 5 is 0.0021 feet; the value indicated by the test in uni

form flow was 0.009 feet. The value of 0.0021 feet is very nearly 

the thickness of the screen, two wire diameters being 0.017 feet. One 

will note, however, that both values of k indicate a roughness com

parable to concrete; corresponding values of n are 0.012 and 0.015.

Any derivation of c^ as a function of relative roughness 

which assumes the boundary shear to be composed entirely of form drag 

on elements of roughness, and which approximates the velocity profile 

by an expression of the form u * b log y , will yield an expression 

of the form

(25)

in which the ratio between A and B is the logarithm of 30, 1.477. 

If, however, one makes the assumption that the distribution of the 

velocity is of the f ora u * m y“ , one arrives at an expression of 

somewhat different form. Doing this and deliberately arranging it
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to resemble Equation (25), we have

(26)

in which n is the exponent in the expression u ■ m y*1 ,

and C is a constant which depends upon the shape of the

velocity profile, and the height, shape, and density of the roughness.

In the opinion of the author, the actual value of the rough

ness of the screen as expressed by a magnitude for k remains in 

doubt over a range of values all of which are associated with various 

concrete surface textures. The fact that it lies within this range, 

however, is sufficient to render the observations made in flow over 

the screen very useful, as will be demonstrated in the following 

illustrative example.
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APPLICATION TO THE DESIGN PROBLEM

Outline of the Method of Approach

The design problem contemplated herein requires the location 

of the critical point for a given discharge on a given spillway and 

the calculation of the water-surface profile upstream from that point* 

The location of the critical point is determined by the graphical 

intersection of the projection of the locus of the nominal thickness 

of the turbulent boundary layer with the projection of the locus of 

the free surface. The locus of the nominal thickness of the boundary 

layer is determined with reference to either Figure 24 or 25, depend

ing upon the roughness of the surface. The locus of the free surface 

is determined by adding to the depth of the potential flaw the dis

placement thickness of the boundary layer, which is assumed to be 

from l/0 to 1/10 of the thickness of the boundary layer, depending 

upon the magnitude of the Reynolds number.

Illustrative Example

Consider a concrete spillway of indefinite length with a 

slope of 0.80 and a roughness such that k is 0.005 feet. Let it 

be required to locate the critical point and the line of the free 

surface when the discharge is 360 cubic feet per second per foot of 

spillway width.

7<e shall make use of the line labeled "Design Curve" on 

Figure 25, performing the computations in tabular form as follows:
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X x/k S / x 6 U2/2g q/U *0
50 1 x 104 0.0073 0.36 40 7.09 7.13

100 2 x 104 0.0066 0.66 80 5.00 5.07

200 4 x 104 0.0060 1.20 160 3.53 3.65

400 0 x 104 0.0055 2.20 520 2.50 2.72

600 1.2 x 10S 0.0052 3.12 480 2.04 2.35

The column headed x is taken to be any reasonable value of distance 

along the slope at which the location of the water surface is desired. 

The value of x/k is the value of x divi ed by 0.005 feet. The 

value of &f x  is read from the design curve on Figure 25. ■‘■he 

value of 6  is obtained by multiplication of the first and third 

columns. The value of U2/2S is by definition the product of the 

slope and x , in this case 0.00 x . Having determined the value 

of U from the known magnitude of the velocity head, we divide the 

discharge per foot by it to obtain the potential thickness of flow, 

q/U • To this we add 10$ of the thickness of the boundary layer 

to determine the actual thickness of the flow, listed as yq in the 

last column.

The best method of locating the critical point involves plot

ting the values of 6  and yQ obtained in the proceeding table as 

functions of x . H  is convenient to use log-log paper for this pur

pose because of the great difference between the depth of flow and the 

thickness of the boundary layer in the upper portions of the flow.



www.manaraa.com

44

This is illustrated in Figure 30, in which both the locus of the nomi

nal thickness of the boundary layer and that of the free surface are 

shewn.

In order to illustrate the effect of change in the roughness, 

the calculation process was repeated using the same situation but with 

a roughness twice as large, i.e., 0.01 feet. The line labeled 11 y n 6 9 

k - 0.01* ” is the result of this computation. One will note that the 

difference between the values of x for the two cases is about 30 

feet in 450 feet, or a variation of less than 10$.

One will note that the order of magnitude of the changes in 

6 /x produced by a difference in slope is less than that involved 

in changing the roughness twofold. Thus the single design curve on 

Figure 25 will suffice for all slopes.

Once the value of x at the critical point has been deter

mined, the corresponding station on the slope may be located by measur

ing the value of x in feet along the slope. The origin of coordinates 

is the intersection with the line of total head of a line drawn parallel 

to the slope through the water surface at the critical point. This 

procedure merely satisfies the definition of x .
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CONCLUSIONS

1. Aside from their respective influences upon the location of the free 

surface and the magnitude of the potential velocity, neither the slope 

of the boundary nor the magnitude of the discharge is significant in 

determining O as a function of R ■ Ux/v or as a function of x/k , 

while the magnitude of the boundary roughness is the most significant 

variable in this respect, its influence decreasing with increase in the 

boundary-layer thickness.

2. Applications of the Kars&n-Prandtl velocity-distribution equations 

for turbulent flow near smooth and near rough boundaries to the turbu

lent boundary layer as it develops on both smooth and rough steep slopes 

yield expressions for c^ which are excellent approximations to the 

results obtained experimentally. In the case of the rough boundary, 

however, such agreement requires the use of a value of k considerably 

less than that determined by testing the same roughness in uniform flow 

in an open channel.

3. The shape of the velocity profile within the turbulent boundary layer 

as it developes on smooth steep slopes is little different from that ob

served in flow past flat plates, while that associated with the rough 

boundary is considerably less block-like at the same Reynolds number. In 

both instances, an expression of the form u * m y13 is a better charact

erisation of the velocity distribution uhan one of the f arm u * b log y.
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4. At large distances along a steep slope the quantity d 6 /dx is 

nearly constant and not greatly different for the various roughnesses 
encountered on concrete spillways. For this reason, a useful calcu

lation of the location of the critical point ray be made without a 
precise specification for the value of k .
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Figure 18 (a). Water Surface, Screen Boundary, 
20° Slope, 1.22 csf/ft.
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Figure 18 (b). Water Surface, Screen Boundary,
20° Slope, 2.96 cfs/ft.
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